Study of Bi-criterion Upper Body Posture Prediction Using Pareto Optimal Sets

نویسندگان

  • R. Timothy Marler
  • Jingzhou Yang
  • Jasbir S. Arora
چکیده

This study involves further development of a direct approach to optimization-based posture prediction by using multi-objective optimization (MOO). Human performance measures representing joint displacement and delta potential energy are aggregated to predict more realistically, how virtual humans move. It is found that potential energy does not govern independently human posture. Rather, it must be coupled with another objective to avoid non-unique solutions and to improve realism. In any case, it is more suitable when reaching behind the avatar. Thus, we refine the idea of task-based posture prediction, concluding that performance measures should depend not only on the task being completed but also on where the task is completed relative to the human. Pareto optimal sets are depicted using the weighted sum and weighted min-max methods for MOO. By leveraging a special form of Pareto optimal set, insight is gained concerning how the functions should be combined. We find that the two MOO methods perform equally well, and the general form of the sets is independent of the target (to be touched with the finger) location.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An inverse optimization approach for determining weights of joint displacement objective function for upper body kinematic posture prediction

Human posture prediction can often be formulated as a nonlinear multiobjective optimization (MOO) problem. The joint displacement function is considered as a benchmark of human performance measures. When the joint displacement function is used as the objective function, posture prediction is a MOO problem. The weighted-sum method is commonly used to find a Pareto solution of this MOO problem. W...

متن کامل

Multi-objective calibration of a distributed hydrological model (WetSpa) using a genetic algorithm

A multi-objective genetic algorithm, NSGAII, is applied to calibrate a distributed hydrological model (WetSpa) for prediction of river discharges. The goals of this study include (i) analysis of the applicability of multiobjective approach for WetSpa calibration instead of the traditional approach, i.e. the Parameter ESTimator software (PEST), and (ii) identifiability assessment of model parame...

متن کامل

Branch-and-bound for bi-objective integer programming

In Pareto bi-objective integer optimization the optimal result corresponds to a set of nondominated solutions. We propose a generic bi-objective branch-and-bound algorithm that uses a problem-independent branching rule exploiting available integer solutions, and cutting plane generation taking advantage of integer objective values. The developed algorithm is applied to the bi-objective team ori...

متن کامل

MULTI-OBJECTIVE OPTIMAL DESIGN OF SATMD INCLUDING SOIL-STRUCTURE INTERACTION USING NSGA-II

In this paper, a procedure has been introduced to the multi-objective optimal design of semi-active tuned mass dampers (SATMDs) with variable stiffness for nonlinear structures considering soil-structure interaction under multiple earthquakes. Three bi-objective optimization problems have been defined by considering the mean of maximum inter-story drift as safety criterion of structural compone...

متن کامل

Optimal µ-Distributions for the Hypervolume Indicator for Problems with Linear Bi-objective Fronts: Exact and Exhaustive Results

To simultaneously optimize multiple objective functions, several evolutionary multiobjective optimization (EMO) algorithms have been proposed. Nowadays, often set quality indicators are used when comparing the performance of those algorithms or when selecting “good” solutions during the algorithm run. Hence, characterizing the solution sets that maximize a certain indicator is crucial—complying...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005